
International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 609

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

P2P Botnet Detection Using Machine Learning
Algorithm: The Tools

Blessing Iduh, Raphael Okonkwo, Obiajulu Ositanwosu, Obinna Iwegbuna

Abstract— Creating Botnet detection systems have become very imperative, due to the continued creation of newer Botnet
toolkits cyber crimminals. A Botnet is a network of compromised computerized devices that are connected to a central
controller called a Botmaster. These devices are usually used to carry out malicious activities like identity theft, sending of
spam mails, DOS attacks and other damaging acts without the knowledge of the actual owner of the device. Botnet
detection using advanced techniques has become very necessary as Botmasters continue to device new means of attack.
This paper therefore, presents some relevant tools and procedures involved in creating a Botnet detection system, and how
to apply these tools using machine learning algorithms. This paper also shows the steps involed in applying these tools.

Index Terms— Botnet, Botmaster, Botnet Detection, Machine Learning, Cyber Security, C&C Channel, Malware, Decision Tree Classifier

—————————— ——————————

1 INTRODUCTION

otnets have in recent times, become a very major
challenge in the cyberspace. The word Botnet ac-
cording to [1] is a combination of the words roBot
and NETwork. It is used to describe a group of com-
promised computer systems that are usually con-
nected to a central controller called a Botmaster. The

Botmaster uses command and control channels, to manipulate
these infected computers. The difference between Botnets and
other malwares according to [2], is the use of command and
control (C&C) channels by Botnets. The C&C channel allows
Bots to receive commands and perform malicious activities. A
single infected system is known as a Bot, while a network of
infected devices is referred to as a Botnet. Botnets are created
by the Botmaster for communication infrastructure to perform
malicious activities like email spamming, click fraud, identity
theft, phishing attacks, denial of service attacks, information
theft and distributed denial of service attacks. Systems that are
connected to the internet have the chances of getting infected
and become part of a Botnet. According to [3], in their Survey
of HTTP Botnet, a Botnet was described as a group of cooper-
ated computers which are remotely controlled by hackers to
launch various network attacks, such as DDoS attack, junk
mail, click fraud, identity theft and information phishing. [4],
in their Overview of Peer-to-Peer Botnets noted that Botnets
have recently been identified as one of the most important
threats to the security of the Internet. In the work of [5], they
explained that Botnets have five states in their life cycle: the
Injection state where the malware gets into the host system

and which is achieved when the host download the malware
through e-mail, trojan software and click fraud techniques.
The user of the system innocently clicks on these items and a
download and infection is initiated; being the connection state
where the Bot will is made to connect with the Command &
Control (C&C) server; the third state being the waiting state
where the Bot waits for the request from its master; the execu-
tion state where the received request is performed or treated
by the Bot and Finally, the maintenance and upgrading state
where the Botmaster upgrades their attacking techniques in
order to bypass any detection method. A user can get infected
by visiting an infected site or accessing resources from such
sites. Also, an infected system on a network can infect other
systems on that same network. Botnets have continued to
cause serious threats to the society including private and gov-
ernment organizations, national infrastructure and the general
internet community. Botnet detection involves the identifica-
tion of Bots in the machine or network so that it can be
mamaged. In recent years Botnet detection has been a hot top-
ic in the research community due to increase in the malicious
activity. According to [6], the key features and characteristics
of Bots are considered as a critical step when dealing with
Botnet detection.

2. LITERATURE REVIEW

Several researchers like [7], [8], [9], have worked on Botnet
Detection and management. In general, two major approaches
exist for detection of Botnets these include; the signature-
based and anomaly based detection methods. Researcher like
[10] and [11] among others, have studied the signature-based
detection and their results are applicable for known Bots. In
their approach, every packet is monitored and compared to
the pre-configured signatures and attack patterns in the data-
base. Even though their approach can detect some Botnets, the
signature database needs to always be updated to detect the
new Bots. In addition, Bot-masters obfuscate the Bots by novel
packers to avoid detection by the signature-based approaches.
Also, a signature-based Botnet detection technique uses the

B

————————————————

 Blessing Iduh is currently pursuing PhD degree program in Data
Conmmunication and Networking at Nnamdi Azikiwe University, Awka,
Anambra State, Nigeria. E-mail: bn.iduh@unizik.edu.ng

 Raphael Okonkwo is currently a Professor of computer Science, Nnamdi
Azikiwe University, Awka, Anambra State, Nigeria. E-mail:
ro.okonkwo@unizik.edu.ng

 Ositanwosu Obiajulu is currently pursuing PhD degree program in Infor-
mation Technology, Machine learning and IOT Soouth China University,
Guangzhou, PR China. E-mail: oe.ositanwosu@unizik.edu.ng

 Obinna Iwegbuna is currently pursuing PhD degree program in Infor-
mation Technology at Ebonyi State University, Ebonyi State, Nigeria. E-
mail: @unizik.edu.ng

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 610

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

signatures of current Botnets for its detection. Other Botnet
detection techniques include; anomaly based detection, net-
work based detection, data mining base detection and Ma-
chine learning based Botnet detection techniques. In this work,
the focus is on the use of machine learning algorithms for Bot-
net detection. [12], proposed a machine learning technique for
Botnet detection that uses network statistics. These statistics
involves bytes per second, packet duration per second of some
protocols used for chatting such as IRC protocol. [10], present-
ed a detection approach that examines the use of network flow
characteristics like bandwidth, packet timing, and burst dura-
tion to show evidence of Botnet activity by filtering traffic that
are unrelated to Botnets, to reduce the amount of data that is
being processed.

3 IMPLEMENTATION

3.1. The Packet Capture Phase

This phase involves the collection of dataset for the Botnet

Analysis. In this work, the dataset was collected from a cam-

pus network. The setup for the data capture is shown in fig. 1.

The Wireshark software was used as the tool at this phase. The

Wireshark software was installed into a host computer and

connected to the enterprise network. The host needed to be on

the same network that the analysis and detection is to be car-

ried out so as to get a live capture of activities that are going

on on the network at selected time frames. In this case, the

traffic and activities on the network were captured for 20

Minutes. Note that the longer the time spent in capturing the

data, the larger the file. And the larger the file, the heavier it is

to analyze. A sample capture of the Wireshark interface is

shown in figure 1. The information gathered about individual

packets on the captured network include, the time of the cap-

ture, the source and destination address of the packet, the in-

ternet protocol type of the packet which shows whether it is a

transmission control protocol (TCP) packet, which is the pro-

tocol that controls uploading and downloading of files on the

internet; an Address Resolution Protocol Protocol (ARP) pack-

et, which is the protocol that performs the Internet Protocol

(IP) routing. ARP locates the hardware address, which is also

known as the Media Access Control (MAC) address of a host

from its known IP address. The Multicast Domain Name Ser-

vice (MDNS) protocol as shown in figure 1, shows all packets

that has to do with printing from a network printer or such

network devices in the network. .

The packets were captured based on the activities going on in

the network at the time of the capture, which involves the sites

visited by different users in that network. The system was able

to capture both benign and infected traffics on the network for

analysis.

Figure 1. Wireshark capture interface

3.2 . Flow Characteristics Extraction

This stage involves converting the captured files into an ap-
propriate format for the analysis. The Wireshark application,
captures its data in .pcap format. This format is not recogniza-
ble by the system. Therefore, it was extracted and converted to
a comma delimited format (.csv) and exported to Microsoft
excel. This is shown in figure 2.

Figure 2. Captured data in .csv format

3.3 . Classification Stage

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 611

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

The classification stage of this work was done, using Machine

learning algorithms. This was achieved with the Python ma-

chine learning module. Some of the Python tools and libraries

that were put together for the classification include;

i) NUMPY – Numerical Python (Numpy) is a library for the

Python programming language, it has support for large, mul-

ti-dimensional arrays and matrices. Numpy has a large collec-

tion of high-level mathematical functions to operate on these

arrays. It was used in this work, by python to handle the mul-

tidimensional arrays and functions that were needed for the

classification.

ii) SCIKIT-LEARN – Scikit-Learn is a machine learning library

for Python programming language. It was used for this work

because it supports the supervised and unsupervised machine

learning algorithm which were used for this work for han-

dling encrypted C&C channels. It builds on two basic libraries

of Python, NumPy and SciPy which was why we needed to

first import the Numpy library to accommodate the scikit-

learn. It was one of the tools used to perform the clustering,

regression and classification in this system.

iii) TENSORFLOW - TensorFlow is a machine learning library,

and it was used in this work as a tool to communicate with the

hardware and read details from the file. With Tensorflow, af-

ter writing the codes in python, the program was compiled

and run on the CPU directly. Tensorflow uses a system of

multi-layered nodes that allowed the training and deployment

of the system irrespective of its large datasets

iv) KERAS- keras is also a machine learning tool that works

with python. It provided a high-level API. Keras is written in

Python and it is capable of running on top of TensorFlow, Mi-

crosoft Cognitive Toolkit, R Programming and Theano. It is

designed to enhance fast experimentation with the deep neu-

ral networks. It was used in this work because it is user friend-

ly, modular, and far reaching. It provided the building blocks

to create and train the datasets.

v) THEANO- Theano is a Python library that enables the eval-

uation of mathematical operations as well as multi-

dimensional arrays in an efficient mannar. It is very useful in

machine learning and deep learning.. Theano makes good use

of the Graphic Procession Units (GPUs) as oppose to Central

Processing Units. Theano has the ability to convert structures

very efficient codes that works with Numpy. It is specially

designed to take care of the types of computation that is need-

ed for Machine Learning. Theano is for numerical computa-

tion, and is similar to NumPy. It is the tool that was used to

define, optimize, and evaluate the mathematical expressions

involving multi-dimensional arrays efficiently in this system.

It did all the mathematical analysis internally. This allowed it

to make data-intensive calculations up to 100 times faster than

when run on the CPU alone.

vi) PANDAS- Pandas is a Python library that provides high-

level data structures which are simple to use as well as intui-

tive. It is a software that is specifically created for the Python

programming language to be used for analysis and manipula-

tion of data. Pandas specifically offers structures and opera-

tions of data that can be used to manipulate time series and

numerical tables. Pandas is a free and open software. The

name is gotten from term "panel data". In this paper, Pandas

was used for grouping, combining and filtering the data, as

well as performing time series analysis in the system. Pandas

was used to fetch the dataset in Python from the CSV, Excel,

JSON files and manipulated the data to perform operations on

it.

vii) MATPLOTLIB – is used in Python programming envi-

ronment, as the plotting library. It works together with

Numpy, which is the Python numerical mathematics exten-

sion. Matplotlib, creates an object-oriented API that can be

used to embed plots into an applications. Matplotlib was used

for the data visualization of this work. This is because, it has

the ability as a standard python library, to be used to 2D plots

and graphs. It was imported in this work to create a graph of

the dataset.

viii) SEABORN - Seaborn is a graphic library that is built on

the platform of Matplotlib. It enables you make better charts,

create better visuals for your data. Seabon data visualization

library was imported in this work. It helped to build on the

Matplotlib’s foundations.

ix) PICKLE - The pickle module was used to implements bina-

ry protocols for serializing and de-serializing the Python ob-

ject structure. It is the process whereby a Python object hierar-

chy is converted into a byte stream, while unpickling is the

inverse operation, and it’s an operation whereby a byte stream

from a binary file is converted back into an object hierarchy.

3.4. Database Development Tools

Some of the tools used for the data gathering and database

development include;

i) Wireshark

ii) Anaconda

i. Use of the Wireshark tool

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 612

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

Wireshark is a network packet analyzer. It was used to capture

the network packets and to display the packet data in details.

The dataset used for this work was the CTU The dataset

(Garcia, Grill, Stiborek, & Zunino, 2014). Some dataset was

also gathered from Nnamdi Azikiwe University Network

flow. The data set was sniffed from the ‘nitdawireless’ net-

work ‘connection2’. The wireshark packet sniffer was used to

sniff the data both for analysis. The sniffing was done at five

(5) different occasions to enable proper capture of both Botnet

and benign traffic. The dataset were captured for different

durations between 15mins to 3hours. The unizikCapture3 file

had the highest amount of data as its capture time lasted for

2hours 10 minutes.

ii. Use of Anancoda

Anaconda also known as Conda, is an open-source package

manager, environment manager, and distribution of the Py-

thon programming language. It was the environment on

which the entire system was built. It gave the capability to

import all the needed libraries that were used to carry out all

the various stages of this work. Because it’s designed for data

science and machine learning workflows, it was the appropri-

ate tool used to handle the large datasets used in this work.

3.5 Algorithm for the Botnet Detection System

Begin

Step one - Load the data using pandas as usual:

Step two - import pandas as pd

Step three - data = pd.read_csv("capture20110816-

3.binetflow.xz")

Step four - data['Label'] = data.Label.str.contains("Botnet")

Step five – Data Exploration

Step six - data.columns

Step seven - Index(['StartTime', 'Dur', 'Proto', 'SrcAddr', 'Sport',

'Dir', 'DstAddr',

 'Dport', 'State', 'sTos', 'dTos', 'TotPkts', 'TotBytes', 'SrcBytes',

 'Label'],

 dtype='object')

step Eight - first script DataPreparation.py.

step Nine - from __future__ import division

step Ten - import os, sys

step Eleven - import threading

Step Twelve - Create class called Prepare to select training and

testing data:

Step Thirteen - Class Prepare(threading.Thread):

 Step fourteen - def __init__(self, X, Y, XT, YT, accLa-

bel=None):

 Step fifteen - threading.Thread.__init__(self)

 Step Sixteen - self.X = X

 Step Seventeen - self.Y = Y

 Step Eigteen - self.XT=XT

 Step Nineteen - self.YT=YT

 Step Twenty - self.accLabel= accLabel

Step Twenty-One - def run(self):

 Step Twenty – Two- X = np.zeros(self.X.shape)

 Step Twenty – Three - Y = np.zeros(self.Y.shape)

 Step Twemty-four- XT = np.zeros(self.XT.shape)

 Step Twenty- Five- YT = np.zeros(self.YT.shape)

 Step Twenty – Six - np.copyto(X, self.X)

 Step Twenty – Seven - np.copyto(Y, self.Y)

 Step Twenty – Eight- np.copyto(XT, self.XT)

 Step Twenty Nine - np.copyto(YT, self.YT)

 Step Thirty - for i in range(9):

step Thirty-One- Train the dataset.

Step Thirty- Two - First, load the data from the pickle file

Step Thirty three- import the previous scripts

Step Thirty-four - import LoadData

Step Thirty five - import DataPreparation

Step Thirty six - import pickle

Step Thirty seven - file = open('flowdata.pickle', 'rb')

Step Thirty Eight - data = pickle.load(file, encoding = 'latin1')

Step Thirty Nine - import pickle

Step fourty - print(pickle.__doc__)

Step fourty one - Create portable serialized representations of

Python objects.

Step fourty-one –apply machine learning algorithms

Step fourty two - Import the required modules to use four ma-

chine learning algorithms from sklearn:

Step fourty – three - from sklearn.linear_model import

Step fourty four- from sklearn.tree import

Step fourty five- from sklearn.naive_bayes import

Step fourty six - from sklearn.neighbors import

Step fourty seven - Prepare the data by using the previous

module build.

Step fourty Eight- import DataPreparation by typing import

DataPreparation:

Step fourty Nine - DataPrepation. Prepare (Xda-

ta,Ydata,XdataT,YdataT)

Step Fifty- train the models=

Step Fifty one - we now train the model with different tech-

niques so that we can later select the most suitable machine

learning technique for our project.

Step Fifty-two - prepare the data and select the features

Step Fifty Three- define the machine learning algorithm

Step Fifty Four - fit the model,

Step fifty five - print out the score after defining its variable.

Step fifty six - Decision tree model:

Step fifty seven - clf = DecisionTreeClassifier()

Step fifty eight - clf.fit(Xdata,Ydata)

Step fifty nine - paPrediction = clf.predict(XdataT)

Step sixty - Score = clf.score(XdataT,YdataT)

Step sixty – one - print ("The Score of the Decision Tree Classi-

fier is", Score * 100)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 613

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

Step sixty one- Neural network model:

Step sixty two - from keras.models import *

Step sixty three - from keras.layers import Dense, Activation

Step sixty four - from keras.optimizers import *

End

 Algorithm for Classification

Begin

Step 1: import numpy

Step 2: import pandas library

Step 3: import tensorflow

Step 4: read in botnet data .csv

Step 5: is data accurate?

if data in the appropriate format, continue to (6)

else

go back to (4)

step 6: assign labels to the .csv file

step 7: explore data by checking columns and rows

Perform Data Preparation

Step 8: import operating system

Step 9: import threashing

Step10: create a class called preparation

Step 11: select training data

Step 12: select testing data

Step 13: build the data loader

Step 14: prepare the machine learning algorithm (decision tree

algorithm)

Step 15: import loadData

Step 16: import DataPreparation

Step 17: import pickle

Step 18: read in pickle data .pickle

Step 19: Functions:

 dump(object, file)

 dumps(object) -> string

 load(file) -> object

 loads(string) -> object

step 20: call the machine learning classifiers

step 21: import sklearn

from sklearn.linear_model import

from sklearn.tree import

from sklearn.naive_bayes import

from sklearn.neighbors import

step 22: train the model

step 23: prepare data and select its features

step 24: define a machine learning algorhtim

step 25: fit the model

step 25: show results

end

4. CONCLUSIONS

This paper presented some of the relevant tools needed for a

botnet detection and management system. Some related litera-

tures were reviewed. Some tools were presented for each

phases of the system implementation and design. These phas-

es include the packet capture phase, the extraction of flow

characteristics phase and the classification Phase. Some of the

tools presented include; Numpy, Scikit-learn, Tensorflow,

Keras, Theano, Pandas, Matplotlib, Seaborn and Pickel. The

database management tool presented include, Wireshark and

Anaconda. This paper presented a brief step and guide on

how some of the tools were applied. This paper is very signifi-

cant in creating Botnet Detection Systems as it gives a guide

on the tools to use.

REFERENCES

[1]. Analysis of Botnet Classification and Detection Technique: A

Review. Iduh, Blessing Nwamaka and Okonkwo, Obikwelu

Raphael. 10, October 2018, Journal of Emerging Technologies

and Innovative Research, Vol. 5, pp. 195-201.

[2]. HTTP BASED BOT-NET DETECTION TECHNIQUE

USING APRIORI ALGORITHM WITH ACTUAL TIME

DURATION . Khillari, Ashwini and Augustine, Archana.

2017, International Journal of Computer Engineering and

Applications, Volume XI, Issue III, March 17, www.ijcea.com

ISSN 2321-3469 , pp. 13-18.

[3]. A Survey of HTTP Botnet Detection. Chaware, Saurabh P.

and Bhingarkar, Sukhada. 2016, International Research

Journal of Engineering and Technology (IRJET) , pp. 713-714.

[4]. Peer-to-Peer Botnets: Overview and Case Study. Grizzard,

Julian B., et al. 2012, Computer Based Learning Unit,

University of Leeds. , pp. 1-6.

[5]. General framework for detection of botnet using Random forest

in real time. Selvam, Nandhini, Vanitha and Sumathi. 2015,

International Journal of Scientific & Engineering Research,

Volume 6, Issue 4, pp. 469-479.

[6] Botnet Detection and Countermeasures- A Survey. Tesfahun,

Abebe and Bhaskari, D.Lalitha. 2013, International Journal of

Emerging Trends & Technology in Computer Science, pp. 309-

314.

[7[. Botnet Detection based on Anomaly and Community Detection.

Jing Wang, Ioannis Ch. Paschalidis,. 2016, IEEE Transactions

on Pattern Analysis and Machine Intelligence, pp. 523-531.

[8]. Holistic Botnet Detection Framework Independent of Botnet

Protocols and Architecture. Rostami, M. R., Idris, N. B., &

Ismail, Z. A. 2017.

[9]. BOTNET DETECTION BASED ON COARSE GRAINED

PEER-TO-PEER TECHNIQUE . M.Muthulakshmi, M.Grace

Ananthi, S.Suganya & P.Raghavan. 2017, International

Research Journal Of Engineering Sciences (IRJES), pp. 86-89.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 12, Issue 4, April-2021 614

ISSN 2229-5518

IJSER © 2021

http://www.ijser.org

[10]. Chumachenko, Kateryna. MACHINE LEARNING

METHODS FOR MALWARE DETECTION AND

CLASSIFICATION. India : XAMK University of Applied

Science, 2017.

[11]. A Survey on Data Mining Methods for Malware Detection .

Kuber, Ms. Shital Balkrishna. 2014, International Journal of

Engineering Research and General Science Volume 2, Issue 6,

pp. 672-675.

[12]. Pedersen, Matija Stevanovic and Jens Myrup. On the Use

of Machine Learning for Identifying Botnet NetworkTraffic.

Department of Electronic Systems, Wireless Communication

Networks Section, y5430. Aalborg Denmark : s.n., 2016.

IJSER

http://www.ijser.org/

